OsASR2 regulates the expression of a defence‐related gene, Os2H16, by targeting the GT‐1 cis‐element
نویسندگان
چکیده
The GT-1 cis-element widely exists in many plant gene promoters. However, the molecular mechanism that underlies the response of the GT-1 cis-element to abiotic and biotic stresses remains elusive in rice. We previously isolated a rice short-chain peptide-encoding gene, Os2H16, and demonstrated that it plays important roles in both disease resistance and drought tolerance. Here, we conducted a promoter assay of Os2H16 and identified GT-1 as an important cis-element that mediates Os2H16 expression in response to pathogen attack and osmotic stress. Using the repeated GT-1 as bait, we characterized an abscisic acid, stress and ripening 2 (ASR2) protein from yeast-one hybridization screening. Sequence alignments showed that the carboxy-terminal domain of OsASR2 containing residues 80-138 was the DNA-binding domain. Furthermore, we identified that OsASR2 was specifically bound to GT-1 and activated the expression of the target gene Os2H16, as well as GFP driven by the chimeric promoter of 2 × GT-1-35S mini construct. Additionally, the expression of OsASR2 was elevated by pathogens and osmotic stress challenges. Overexpression of OsASR2 enhanced the resistance against Xanthomonas oryzae pv. oryzae and Rhizoctonia solani, and tolerance to drought in rice. These results suggest that the interaction between OsASR2 and GT-1 plays an important role in the crosstalk of the response of rice to biotic and abiotic stresses.
منابع مشابه
Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor.
The Ca(2+)-binding protein calmodulin mediates cellular Ca(2+) signals in response to a wide array of stimuli in higher eukaryotes. Plants express numerous CaM isoforms. Transcription of one soybean (Glycine max) CaM isoform, SCaM-4, is dramatically induced within 30 min of pathogen or NaCl stresses. To characterize the cis-acting element(s) of this gene, we isolated an approximately 2-kb promo...
متن کاملA novel activator-type ERF of Thinopyrum intermedium, TiERF1, positively regulates defence responses
Thinopyrum intermedium is resistant to many different pathogens. To understand the roles of ethylene response factors (ERFs) in defence responses, the first member of the ERF family in T. intermedium, TiERF1, was characterized and functionally analysed in this study. The TiERF1 gene encodes a putative protein of 292 amino acids, belonging to the B3 subgroup of the ERF transcription factor famil...
متن کاملmiR-33-5p Regulates CREB to Induce Morphine State-dependent Memory in Rats: Interaction with µ Opioid Receptor
The aim of the present study was to examine the hypothesis that miR-33-5p attenuates morphine state-dependent (StD) memory via the µ opioid receptor by regulating cyclic AMP response element-binding protein (CREB). The effects of post-training morphine and morphine StD memory and their interaction with pre-test naloxone were evaluated using a single-trial inhibitory avoidance paradigm. Then, th...
متن کاملNetwork-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملRhizophagus irregularis regulates antioxidant activity and gene expression under cadmium toxicity in Medicago sativa
Cadmium (Cd) is a phytotoxic heavy metal (HM) that can induce generation of reactive oxygen species (ROS). Arbuscular mycorrhizal fungi (AMF) are considered as bio-ameliorators that help to mitigate HM-derived oxidative stress. The objective of this study was to assess AM fungus Rhizophagus irregularis on changes in enzymatic activity and transcription of antioxidants of Medicago sativa to Cd s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2018